The Large Scale Magnetic Fields of Thin Accretion Disks
نویسندگان
چکیده
Large scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared to the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number Pm is around unity. In this work, we revisit this problem considering the angular momentum of the disk is removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, β ∼ 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full 3D numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong MRI turbulence surrounding them. Subject headings: accretion, accretion disks, galaxies: jets, magnetic fields
منابع مشابه
Effect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars
Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...
متن کاملCoronae as Consequence of Large Scale Magnetic Fields in Turbulent Accretion Disks
Non-thermal X-ray emission in compact accretion engines can be interpreted to result from magnetic dissipation in an optically thin magnetized corona above an optically thick accretion disk. If coronal magnetic field originates in the disk and the disk is turbulent, then only magnetic structures large enough for their turbulent shredding time to exceed their buoyant rise time survive the journe...
متن کاملGeometrically Thin Disk Accreting Into a Black Hole
A numerical model of a steady state, thin accretion disk with a constant effective speed of sound is presented. We demonstrate that ‘zero torque’ inner boundary condition is a reasonable approximation provided that the disk thickness, including the thickness of the torquing magnetic fields, is small everywhere. It is likely that this conclusion is correct also for non-steady disks, as long as t...
متن کاملThin Disk Accreting Into a Black Hole
A numerical model of a steady state, thin accretion disk with a constant effective speed of sound is presented. We demonstrate that 'zero torque' inner boundary condition is a reasonable approximation provided that the disk thickness, including the thickness of the torquing magnetic fields, is small everywhere. It is likely that this conclusion is correct also for non-steady disks, as long as t...
متن کاملAdvection of Magnetic Fields in Accretion Disks: Not so Difficult after All
We show that a large-scale, weak magnetic field threading a turbulent accretion disk tends to be advected inward, contrary to previous suggestions that it will be stopped by outward diffusion. The efficient inward transport is a consequence of the diffuse, magnetically-dominated surface layers of the disk, where the turbulence is suppressed and the conductivity is very high. This structure aris...
متن کامل